Optimized Resource Access Control in Shared Sensor Networks

Christophe Huygens, Nelson Matthys and Wouter Joosen

christophe.huygens@cs.kuleuven.be

Mobisec 2010
Quick overview

- Intro
- Problem domain: long-lived WSN settings
- Problem analysis
- Contribution
- Results and Q&A
Monolithic – security problem
Real-world – extra security issues

- Harbours
- Shipping Co.
- Sales Co.
- WAREHOUSE
- INTERNET
- APPLICATION ADMIN.
- SYSTEM CONTROL
- BACK END SYS.
Federating and sharing

- Current WSN research = single applications
- Typical business usage scenarios are different
 - Devices of different owners must cooperate to achieve objectives > federation - logistics
 - Devices must offer services to multiple applications of different owners > sharing – building management
- F/S security challenge complements scale, dynamics, device heterogeneity, locality
- Beyond monolithic security requirements
Contribution

- Analysis of the security gap of *sharing*
- Detailed requirements for WSN access control
- Solution for WSN access control
 - Operational model
 - Reference monitor
 - Integration strategy
- Evaluation
Shared WSN Security stack

- Access control
- Process isolation
- Controlled cooperation

- Secure routing
- Key management
- Crypto
- Physical

Done
Operational Model
Resource Access Control Req’s

- Traditional:
 - Complete mediation
 - Isolation
 - Verification

- Applications and infrastructure are decoupled

- New setting of long-lived WSN
 - Energy conservation

May 28, 10
Optimized Resource Access Control in Shared WSN – Mobisec 2010
Resource Access Control Req’s

- Decoupling
 - Stakeholder decoupling, transition to sharing
 - Segregation of duties (SE: separation of concerns)
 1. No impact on Application owner development

- Energy considerations
 2. Enable light-weight run-time change for Administrative owner
 3. Selective deployment
 4. Maximize work in resource-rich environment
Solution

1. No impact on Application owner development
 Aspect-oriented instrumentation

2. Enable light-weight run-time change for Adm. owner
 Small policy-driven engines

3. Selective deployment
 Selective instrumentation

4. Maximize work in resource-rich environment
 Pre-deployment instrumentation
Operational Model
Policy engine

- Match (object, operation) = reference monitor
- Decision tree = policy
- Trusted Computing Base implements RM
- TCB = policy engine + control flow + system sec.
- Control flow is easy to implement (WSN security)
- Policy engine is challenging on WSN nodes
Policy Statements

- ECA semantics
- Snippet

```
policy "example access control" {
  on accessrequest req
  if(req.applicationID == "iid7" &&
      req.resourceId == "lightsensor" &&
      req.operationId == "get")
  then allow
}
```
Instrumentation

- ... intercept request in original app code on node
- ... intercept communication of interaction
- Instrumentation of app code
 - Byte code instrumentation of app code
 - ... when submitted to Admin. Owner
 - ... before deployment on node
 - ... using AO techniques (AspectJ)
J2ME Instrumentation tool chain

```
package org.sunspotworld;
import com.sun.squaawk.*;
public aspect intercept {
    private Isolate isolate; private int iid;
    before(LightSensor ls): target(ls) && call (* getAverageValue(..)) {
        isolate = com.sun.squaawk.Isolate.currentIsolate();
        iid = isolate.getId();
        if (!engine.allow("iid"+iid,"lightsensor","get")
            {throw new IllegalAccessException();})
    }
```

May 28, 10
Optimized Resource Access Control in Shared WSN – Mobisec 2010
Evaluation

- **Policy engine**
 - Prototype on Sun SPOT (180 MHz ARM920T 512K)
 - Policy item = 142 Bytes on transmit
 - Policy item = 420 Bytes on node
 - Engine code = 28 kBytes (rich engine)
 - <> Atmel ATmega1284p Raven 16K
 - Evaluation = 1 to 2 ms

- **Instrumentation**
 - AspectJ run-time can be stripped to 2.3 kBytes
Results – Q&A

- Energy optimization
 - Life-cycle: selective pre-deployment activities are low-cost
 - Different abstractions for run-time and development: policy is suitable R/T abstraction at low-cost versus OO/CBSE

- SE perspective
 - Abstractions align well with different stakeholder views
 - Low coupling particularly for CBSE (=non-intrusive development)

- Elegant solution to Resource Access Control

- Challenges:
 - Equilibrium: resource consumption <> engine size
 - Choosing the right abstraction can be hard
Backup slides
Research background

- Middleware challenges for long-lived WSN
 - Each stakeholder in his part of the life cycle needs optimal abstraction
 - Abstraction > middleware mechanism
 - Mechanisms have different cost
 - One-size fits all is suboptimal
 - How can we integrate these multiple mechanisms

- Security problem presented is case study